Data Science

What is Data Warehouse?

2 min read

Many organizations tend to have a bulk of raw data that resides in different operational systems or data sources. The absence of a unified database leads to a time-consuming data-gathering process.

Data warehouse is a real godsend to many companies because it is a practical tool for storing and optimizing data, in which a lot of corporations opt to generate more business benefits. Thus, to succeed as a BI analyst or data science, one must grasp the concept of data warehouse (DW).  

What is Data Warehouse?

What is Data Warehouse exactly? A data warehouse (DW) is a centralized site that brings all the raw data together and optimizes it for further analysis and visualization. Data warehousing is a structured application for BI, rendering data-harnessing much more time-effective.

The Extract, Transform and Load (ETL) processes mean that data specialists are required to extra data from multiple data sources, transform it to store it in a suitable format for querying and analysis purpose. Being an integral part to produce performance metrics and predictive insight, the ETL process is a recurring process that is maintained and updated on a daily basis so as to instant and strategic business decisions.

Further, knowledge about SQL software is a big plus for employers. Through SQL, IT specialists can help design and implement data warehouses, and integrate and visualize data using analytics. Experience in SQL can certainly help IT specialists to climb their career ladders and stand out among other BI analysts.

Data-Warehousing Application across Industry

The reason why IT talents with Data Warehousing knowledge are highly sought after is that various industries, including retail, finance and banking, health care, are seeking related expertise. For instance, Data Warehousing has great importance to the retail sector because of its ability to generate solutions such as better in-store placement and product pricing.

With a centralized database, valuable information such as which items are being purchased the most, which row in the store do they belong to and overall product sales can be easily rendered. It allows the merchandisers to quickly predict the products they need to replenish.


Sign up for our Newsletter

Join our newsletter and get resources, curated content, and design inspiration delivered straight to your inbox.

Related Posts

Data Science

ChatGpt 都識揼Code?IT人難逃被AI人工智能取代的命運?

IT 人會不會被AI人工智能取代?近年來,隨著人工智能技術的不斷發展,許多人擔心自己的工作可能會被AI取代。目前,許多AI技術已經能夠完成軟件開發的某些部分,因此有人認為,軟件工程師的工作可能會被AI取代,飯碗也可能不保。 AI 人工智能會取代IT人的想法,可能源自於大家對軟件工程師工作及AI的理解不夠充足。 AI技術的發展引發了對於軟件工程師職業前景的擔憂。然而,軟件工程師的工作並非像一些人想象的那樣容易被AI取代。讓我們嘗試解釋為何AI無法取代軟件工程師吧(至少不能大規模地取代)。 要了解AI 人工智能能否取代IT人,首先我地要知道AI 是如何學習的。AI學習是透過大量相似開源數據學習相對重覆的事物,請留意重點,是「大量」,「相似」,「開源」數據。例如認人,搜尋法律案件,分析病人身體數據,等能力。但如果一個只被訓練認人的AI,見到一張猩猩的圖片,它未必即時辨認到這張圖片中的不是人類。又或者一個被訓練分析香港法律的AI,突然香港有需要增加一條法例,AI並不能夠根據一條新的法例提供準確意見。 以上東西都可以有大量數據的原因,是因為人像相在網絡上可以輕易找到的。法律判刑及理據大部份都是公開的,而判刑準則大都依照以往例子。病人數據當然並非完全公開,病人個人資料是絕對保密,但除去個人資料後的血液數據或X光片等不同資料,則有醫學及研究作用,而醫生分析病情都是根據某病人的數據或檢查結果,比對以往類似病歷的病人,而得出某一病人是健康或生病以至於哪一種病的理據。以上的例子都是AI人工智能能代替人類工作的最佳例子,透過「大量」,「相似」的「開源 」或「開放」數據,而「得出結論或結果」的工作。 再以作曲為例子,AI人工智能可以透過大量例如廣東歌,再透過告訴它哪一首歌最大熱,它便可以透過以前流行大熱的歌中找一些相似的「Pattern」,例如這些歌大部份幾分幾秒會去到副歌,副歌多長,通常每段配搭多少個音節,或者靠寫該AI 的人告訴它,還有甚麼因素及Pattern能影響一首歌會否大熱,它再嘗試根據這些條件或Pattern寫一首歌。但它寫不到新的風格,或者它隨機寫到新的風格之後,它無法估計這首歌有否大熱的機會,最終仍是需要人類作最終決定。...

Don't forget to join our upcoming free IT CAREER TALK on Eventbrite

X
Facebook
YouTube
LinkedIn
Instagram